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Abstract 

This study examines the ability of the CTH hydrocode to predict the effects of rod nose shape 
on the threshold impact velocity, whereby tungsten alloy long rods transition from rigid-body to 
eroding-rod penetration during penetration or perforation of thick aluminum targets. Two rod 
nose shapes (hemispherical and ogival) were used in the simulations, and two aluminum alloys 
(5083 and 7039) were used as the target materials. The predicted results are compared to an 
experimental study. Predictions of the threshold velocity for the ogival-nose rod are offered. 
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1. Introduction 

In examining the convergence characteristics of the Eulerian CTH hydrocode [1] as a function 

of spacial resolution, Zukas [2] found that the code could not accurately predict perforation of armor 

plate by a hard projectile at low velocities (less than 1.5 km/s). A penetrator, which, in experiments, 

perforated a finite steel target with significant residual length and velocity, was predicted to be 

unable to perforate the target. Previously, this problem had been modeled successfully using an in- 

house version of the EPIC Lagrangian hydrocode. Zukas observed that, regardless of the mixed cell 

strength formulation used (several are available in CTH), high-strength penetrator material included 

in a mixed cell was modeled as being significantly softer, an unrealistic treatment that caused 

excessive deformation in the penetrator. The net effect was that the CTH hydrocode could not 

accurately model the rigid-body penetration of a soft target, an eroding projectile penetrating harder 

targets at low velocities or sliding between two material interfaces. 

A new boundary layer algorithm for sliding interfaces (BLINT) was recently incorporated into 

the CTH hydrocode for two-dimensional problems only [3]. The algorithm relocates the slip layer 

outside of the mixed cells and into the softer material, thus allowing hard materials to penetrate as 

rigid bodies. Good correlation with experiments have been obtained using the BLINT algorithm by 

Silling [4] and Kmetyk and Yarrington [5]. They modeled hard penetrators impacting soft targets 

knowing a priori that the penetrators would remain rigid. 

This study examined the ability of the CTH hydrocode (August 1993 release) to predict the 

impact velocity at which a penetrator would transition from rigid-body to eroding-rod penetration 

and the effect of a penetrator's nose shape on this transition velocity. The perforation of soft 

aluminum targets by tungsten alloy (95W-2.5Ni-l.0Fe-l.5Co, cold-worked by swaging to a 21% 

reduction in area) long rods was modeled. To gauge the accuracy of the CTH hydrocode with the 

BLINT algorithm, the simulation results were compared to the experimental depth of penetration 

(DOP) tests [6]. Two rod nose shapes and two target alloys were considered. The rod nose shapes 



were hemispherical and ogival, and the target alloys were 53.34-cm-thick 5083 aluminum and 7039 

aluminum. 

The results of this study first appeared in at the Fourth International Conference on Structures 

Under Shock and Impact (SUSI96) that took place in Udine, Italy from July 3 to 5,1996 [7]. At that 

time the experiments involving the ogival-nose penetrator were not complete; therefore, predictions 

for the ogival-nose penetrators were offered in advance of the experiments. While it now appears 

that the semi-infinite penetration experiments involving the ogival-nose penetrator will not be 

completed, due to lack of funding, experiments for finite 7039 aluminum targets have been 

completed. The predicted threshold velocity for the finite 7039 aluminum target is included herein 

to compare with the CTH hydrocode predictions. This report differs from the original paper by 

including the additional experimental results for comparison with a more detailed description of the 

BLENT model and by providing the input decks used for the simulations. 

The CTH hydrocode is a state-of-the-art, second-order accurate, Eulerian wave propagation code 

developed by Sandia National Laboratories that is capable of solving complex problems in shock 

physics in one, two, or three dimensions. The code provides several constitutive models, including 

an elastic perfectly plastic model with provisions for work-hardening and thermal-softening, the 

Johnson-Cook model [8], the Zerilli-Armstrong model [9], the Steinberg-Guinan-Lund model 

[10,11], and an undocumented power-law model. High explosive detonation can be modeled using 

a programmed burn model, the Chapman-Jouguet volume burn model, or the history variable 

reactive burn model [12]. Several equation-of-state (EOS) options are available, including tabular 

(i.e., SESAME), analytical (ANEOS), Mie-Gruneisen, and Jones-Wilkins-Lee (JWL) [13]. Material 

failure occurs when a threshold value of tensile stress or hydrostatic pressure is exceeded. In 

addition, the Johnson-Cook failure model [14] is also available. When failure occurs in a cell, void 

is introduced until the stress state of the cell is reduced to zero. Recompression is permitted. To 

reduce material diffusion typically encountered in Eulerian simulations, several advanced material 

interface tracking algorithms are provided including the high-resolution interface tracking (HRIT) 

algorithm (available for two-dimensional simulations only), the simple line interface calculation 

(SLIC) algorithm [15], and the Sandia-modified Youngs' reconstruction algorithm (SMYRA) [16]. 



2. Problem Setup 

The two geometries for the tungsten alloy penetrators are shown in Figure 1. The ogival-nose 

penetrator has a length of 10.1346 cm and a diameter of 0.67568 cm. The length of the hemi-nose 

penetrator was shortened to 9.779 cm, such that both penetrators had the same nominal mass of 63 g. 

R0.3378 

^_ 

-9.7790- 
0.6756 J 

-R2.0269 

10.1346- 

0.6756 J 

All  Dimensions  Are  In  Centimeters 

Figure 1. Penetrator Geometries. 

Three different constitutive models were used in the simulations to model the deviatoric response 

of the materials. The choice of the constitutive model used for a material was governed by the 

availability of material data. Material data were not available for the 95W-2.5Ni-l.0Fe-l.5Co, 21% 

swaged tungsten alloy penetrators used in the experiments. Therefore, the alloy was approximated 

using 95W-3.5Ni-l.5Fe tungsten alloy data for the Steinberg-Guinan-Lund strain-rate-independent 

model reported in Steinberg [17]. This tungsten alloy has the same percentage of tungsten and the 

same approximate density as the 95W-2.5Ni-l.0Fe-l.5Co, 21% swaged alloy. For the 7039 

aluminum target, the Johnson-Cook constitutive model was used with parameters reported in 



Johnson and Cook [8]. For the 5083 aluminum target, a power-law constitutive model was used 

with parameters reported in Silling [3] and originally reported in Forrestal, Luk, and Brar [18]. 

The Mie-Gruneisen EOS was used for all materials. EOS data were obtained from a data file 

provided with the CTH hydrocode. The EOS parameters for 5083 aluminum, 7039 aluminum, and 

95% tungsten content tungsten alloy were not available. Therefore, they were approximated using 

parameters for 6061 aluminum, 7075 aluminum, and 90W-7Ni-3Fe tungsten alloy, respectively. The 

initial density of the 6061 and the 7075 aluminum alloys were changed to reflect values for 5083 and 

7039 aluminum, as reported in the Metals Handbook Desk Edition [19]. The initial density of the 

90W-7Ni-3Fe alloy was changed to reflect the initial density of the 95W-3.5Ni-l.5Fe alloy reported 

in Steinberg [17]. The EOS parameters used for all materials are listed in Table 1. 

Table 1. EOS Parameters 

Material 
Density 

Po 
(g/cm3) 

Sound Speed 
c0 

(km/s) 

us-up 
Slope 

Gruneisen 
Parameter 

r0 

Specific Heat 
cv 

(erg/g/eV) 

W Alloy 18.16 4.03 1.237 1.67 1.66ell 

5083 Al 2.66 5.34 1.40 1.97 1.07ell 

7039 Al 2.77 5.20 1.36 2.20 1.07ell 

Failure in most of the simulations was modeled using a threshold tensile pressure criterion. The 

tensile pressure at which the tungsten alloy, the 5083 aluminum, and the 7039 aluminum were 

assumed to fail was 3.5 GPa, 0.45 GPa, and 0.50 GPa, respectively. Additional simulations used a 

strain-based failure criterion that is described later in this report. 

All simulations used a two-dimensional cylindrical coordinate mesh consisting of 85 x 1545 

cells. The mesh in the radial direction starts at the axis of symmetry with a constant cell size of 

0.0422275 cm out to a radius of 1.6891 cm. Thereafter, cell dimensions expand by 5% increments 

out to the outer radius of the target.  This mesh provides eight cells across the radius of the 



penetrator. The mesh in the axial direction has a constant cell size of 0.0422275 cm. Thus, cells in 

the penetrator-target interaction region have a uniform one-to-one aspect ratio. 

Parameters for the BLINT model were chosen to be similar to those reported in Kmetyk and 

Yarrington [5]. Thus, the boundary-layer distance (ww) and the slip-layer distance (wsl) were chosen 

to be twice the zone size of cells in the penetrator-target interaction region. The boundary-layer 

distance defines which cells will be included in the boundary layer. If the cell center of a cell is 

located wbl away from a cell whose center is included in the interface layer, it is considered to be part 

of the boundary layer. The interface layer, which is about two cell widths thick, contains all cells 

whose hard and soft volume fraction vector gradiant magnitudes are both greater than or equal to 0.1. 

The slip-layer distance defines which cells will be included in the slip layer. If the cell center of a 

cell located in the soft boundary layer is wsl from a cell whose center is included in the interface 

layer, it is consider part of the slip layer. Cells located in the slip layer have their flow stresses set 

to zero, allowing sliding to occur in these cells. An option to automatically increase the yield 

strength of the penetrator material by a factor equal to 

o     ) 

(where r0 is the outer radius of the penetrator) was used. This option was used because numerical 

noise can cause shear stresses close to the yield stress to exceed the yield stress, causing premature 

irreversible deformation of the penetrator. An additional option allows for the inclusion of friction. 

However, friction between the target and penetrator was not modeled in this study. Kmetyk and 

Yarrington [5] showed that the BLINT model tended to overpredict penetration in deep penetration 

problems unless friction was included. 

The CTH hydrocode cannot convert velocity in a manner such that both momentum and kinetic 

energy (KE) are both conserved exactly. The default option allows conservation of KE such that 

total energy is conserved during the convection phase of a computational cycle; however, momentum 

is not conserved. A second option converts velocity such that momentum is conserved during the 

convection phase of a computational cycle, and any KE discrepancies are discarded (this is the only 



available option in newer releases of CTH). Simulations were ran using both convection options. 

Simulations that conserved KE during the convection phase of a computational cycle will be referred 

to as KE Sim(s), and those conserving momentum during the convection phase of a computational 

cycle will be referred to as MV Sim(s). A final option conserves both momentum and total energy 

during the convection phase of a computational cycle by depositing the KE discrepancy into internal 

energy. This can have the effect of artificially heating a material; therefore, this option was not used. 

A complete listing of the CTH input data decks used for the simulations is given in Appendices 

A-E. If the only differences between input decks was the striking velocity, conservation method, 

or whether or not the BLENT model is used, then those input decks are not listed. Notes in the input 

decks describe the required changes needed for the input decks not listed. 

3. Results and Discussion 

Initial impact conditions and ballistic test results [6] used for comparison are provided in Table 2. 

The penetration depths listed were measured perpendicular to the original target surface along the 

penetrator's original flight line. In some cases, the penetration channel was significantly curved; 

therefore, the total path length traveled by the penetrator may have been greater than the listed 

penetration depth. The total yaw values for the penetrators were quite small (in most cases less 

than 1 °). However, these yaw values still exceed the critical yaw as defined in Bjerke et al. [20,21], 

since the penetration channel diameter is about the same as the penetrator shank diameter for 

rigid-body penetration of soft targets (e.g., see Forrestal et al. [22]). Any effects of yaw were not 

treated in these two-dimensional simulations. 

The increase in penetration depth for rigid-body, long-rod penetrators penetrating soft targets is 

nearly directly proportional to the striking velocity, except at extremely low striking velocities (less 

than 600 m/s). However, as impact velocity is increased further, the stresses in the nose of the 

penetrator will eventually exceed the yield strength of the penetrator material. The penetrator will 



Table 2. Initial Impact Conditions and Ballistic Test Results 

Shot No. Total Yaw 
(°) 

Striking Velocity 
(m/s) 

Original Mass 

(g) 

Penetration 
(cm) 

Hemi-Nose Penetrator vs. 7039 Aluminum Target 

4338 0.50 1,165 62.7 11.4est. 

4339 0.25 1,038 63.1 28.3 

4340 0.50 1,248 63.1 13.0 

Ogival-Nose Penetrator vs. 7039 Aluminum Target 

4341 0.90 1,156 63.4 37.7 

4342 0.56 1,291 63.4 >53.3 

4343 0.71 1,075 63.1 35.4 

Hemi-Nose Penetrator vs. 5083 Aluminum Target 

4344 0.50 1,086 62.8 44.8 

4345 0.35 1,200 63.0 20.0 

4346 0.25 1,296 62.9 21.6 

Ogival-Nose Penetrator vs. 5083 Aluminum Target 

4347 0.50 923 62.9 41.7 

4348 1.12 1,070 63.1 39.9 

4349 0.80 1,227 62.8 >53.3 

begin to deform plastically, and the increase in penetration with increasing striking velocity ceases 

to be nearly linear. The deformation and erosion of the penetrator at these higher velocities leads 

to a dramatic drop in the penetration depth. Still, further increases in striking velocity will again 

result in a second region displaying a near-linear increase in penetration depth with increasing 

striking velocity. The plot of penetration depth as a function of impact velocity will eventually level 

off as the penetrator approaches the hydrodynamic limit given by 
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where Lg is the initial rod length, and pp and pt are the penetrator and target densities, respectively. 

Experimental DOP results, as well as the predictions from the KE Sims and the MV Sims for the 

5083 and 7039 aluminum targets are shown in Figure 2(a) and (b), respectively. The experimental 

results are represented with solid symbols, the KE Sims are represented with hollow symbols, and 

the MV Sims are represented with half-filled symbols. In addition, the hemi-nose penetrators are 

represented by circles, the ogival-nose penetrators are represented by squares, and the rear of the 

target is represented with a dotted line. If a penetrator perforated the target, it is represented by an 

error bar on the symbol. Examining only the predictions of the hemi-nose penetrators in Figure 2(a) 

and (b), it is apparent that both the KE Sims and the MV Sims show the same trends observed 

experimentally. The KE Sims more accurately predicted the transition velocity from rigid-body to 

eroding-rod penetration (reflected by the decrease in penetration depth). The MV Sims predicted 

that the transition would occur at approximately a 100-m/s higher impact velocity than the 

experiment and appear to consistently overpredict the final DOP at most velocities. This may be 

due, in part, to the KE Sims more accurately predicting the projectile shape than the MV Sims 

(e.g., see Scheffler [23]). For this reason, it was decided to predict the threshold velocity at which 

the ogival-nose penetrators transition from rigid rod to eroding penetrator, using only the KE Sims. 

The CTH hydrocode simulations predicted that the transition velocity for the ogival-nose penetrator 

would he between 1,900 and 2,000 m/s for the 5083 aluminum targets and between 1,800 and 1,900 

m/s for the 7039 aluminum targets. Ballistic experiments of the ogival-nose penetrator will no 

longer be attempted to confirm these predictions, due to lack of funding. Limited test data against 

thinner targets [6] has confirmed that the transition velocity for the ogival-nose penetrator lie above 

1,700 m/s for both aluminum alloys. Ballistic tests against 7.62-cm-thick 7039 aluminum targets 

have shown the transition velocity for the ogival-nose penetrator to lie between 1,755 and 1,768 m/s 

[6]. This compares favorably with the CTH-predicted transition velocity between 1,800 and 

1,900 m/s. 
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Figure 2. Comparison of KE Sims and MY Sims with Experiment 



While the CTH hydrocode seems to have done an adequate job of predicting the threshold 

velocity at which hemi-nose penetrators transition from rigid body to eroding rods, it tended to 

overpredict the actual penetration values. This may have been due, in part, to the exclusion of 

friction in the simulations. The BLINT model was added to the CTH hydrocode in order to model 

rigid-body penetration. Therefore, once the transition to eroding-rod penetration occurs, the model 

may no longer be necessary or accurate. For this reason, the KE Sims for which the BLINT model 

seemed to predict erosion were repeated with the BLINT model turned off. Results of these 

simulations are shown in Figure 3(a) and (b) for the 5083 and 7039 aluminum targets, respectively. 

The symbols in Figure 3 are the same as those in Figure 2, with the exception that half-filled symbols 

represent simulations where the BLINT model was turned off. In examining the figures, it is 

apparent that all of the simulations with the BLINT turned off underpredict the experiment. This 

may, in part, be due to the fact that the option in the BLINT model to increase the penetrator's yield 

strength was no longer in use and, in part, due to the mixed cell treatment artificially reducing the 

strength of penetrator material in mixed cells. The difference between prediction and experiment 

is less for the ogival-nose rods because the influence of material strength is less at higher impact 

velocities. 

While the results so far suggest that the BLINT model appears to predict, at least for the 

hemi-nose KE Sims, the velocity of transition from rigid body to eroding rod, it does not show the 

penetrators eroding in their typical mushroom-head fashion. Instead, the penetrators simply 

deformed with little, if any, noticeable erosion occurring. Magness [24] suggested that the threshold 

tensile pressure failure model used might be the cause. Reasons for this are given in the paper by 

Magness [25] discussing the properties of KE penetrators. To investigate the effect of the failure 

model, all simulations for the hemi-nose penetrator impacting 5083 aluminum at a striking velocity 

of 1,296 m/s were repeated using the Johnson-Cook failure model with all but the first parameter 

turned off. All material would now be set to fail at a strain of 150%. Final projectile shapes are 

shown in Figure 4. Only the projectile material is shown in Figure 4 in order to show the erosion 

products. The projectiles are designated XX-XX-X, where the first two X's represent KE Sim (KE) 

or MV Sim (MV), the second set of X's represents BLINT model (BL) or no-BLINT model (NB), 

and the final X represents threshold tensile pressure failure model (P) or threshold strain model 
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Figure 3. Comparison of KE Sims With and Without BLINT Model With Experiment 
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using Johnson-Cook failure (S). Thus, a designation of KE-BL-P means the simulation was a KE 

Sim with the BLINT model turn on and used the threshold tensile pressure failure model. Under 

the projectile designation is the predicted penetration depth in centimeters. Experimentally, the 

penetration was 21.6 cm and is represented with a horizontal line in Figure 4. The vertical axis in 

Figure 4 represents the penetration depth. 

From Figure 4, it is apparent that very little erosion took place in the KE-BL-P and MV-BL-P 

simulations (KE Sim and MV Sim from Figure 2), and that the drastic drop in penetration seen in 

Figure 2 was due to plastic deformation. Turning the BLINT model off caused a more typical 

erosion event to occur, but also caused excessive deformation in the penetrator (KE-NB-P and MV- 

NB-P simulations). Keeping the BLINT model turned off and changing to a strain-based failure 

model increased the predicted penetration values, and the deformation of the penetrator more closely 

resembled those observed by Magness [25]. With the BLINT model turned on in conjunction with 

a strain-based failure model, the simulations show that some erosion occurs, but not as much as 

expected and the final DOP was over predicted (KE-BL-S and MV-BL-S simulations). In all 

cases, the KE Sims predictions were closer to the experimental result than were their MV Sims 

counterparts. 

4. Conclusions 

It is known that the constitutive response of tungsten alloy is dependent on strain, strain rate, 

tungsten content, grain size, and amount of swaging [26]. In addition, for solid-solid impacts at 

velocities of 500 to 2,000 m/s, initial impact pressures rapidly decay to values comparable to the 

strength of the material. Therefore, the constitutive model is of primary importance in this impact 

regime, and the EOS is of secondary importance [27]. It is probably unrealistic to expect the 

simulation results with the constitutive model approximations and simple failure models used to 

provide an exact match with the experimental data. Nevertheless, the following conclusions are 

offered. 

13 



The BLINT model represents an improvement in the predictive capabilities of the CTH 

hydrocode for certain types of penetration scenarios, such as rigid-body penetrations. The code 

seems to be able to predict the effect on rod nose shape on the threshold velocity at which transition 

from rigid-body to eroding-rod penetration occurs. The predicted transition velocity was determined 

from a dramatic drop in penetration depth with increasing impact velocity. Predictions for the 

transition velocity from rigid-body to eroding-body penetration were offered in advance of 

experiments for the ogival-nose penetrators. The simulations predict the transition velocity to be 

between 1,900 and 2,000 m/s for the 5083 aluminum targets and between 1,800 and 1,900 m/s for 

the 7039 aluminum targets. While the experiments for the ogival-nose penetrator will probably not 

be completed, due to lack of funding, completion of experiments for the ogival-nose penetrator 

against a thinner 7039 aluminum target shows the transition velocity to be between 1,755 and 1,768 

m/s. Thus, the predicted transition velocity between 1,800 and 1,900 m/s compares favorably with 

Magness' ballistic test data [6]. 

In general, the KE Sims did much better than the MV Sims at predicting the transition velocity 

at which hemi-nose penetrators transition from rigid-body to eroding-rod penetration, as well as at 

predicting the DOP. The KE Sims also did better than their MV Sims counterparts in predicting the 

DOP in the study comparing failure models and in the study comparing simulations with and without 

the BLINT model. 
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Appendix A: 

CTH Input For Hemi-Nose Penetrator vs. 5083 
Aluminum Target Using Pressure-Based Failure Model 

19 



INTENTIONALLY LEFT BLANK 

20 



* Run History 

*eor* cgenin 
* 

nose shape tests: hemi v=1086 target=5083 al semi-infinite 
* 

control 
ep 
mmp 
viscosity bl=.l bq=2 bs=0.1 

endcontrol 

mesh 
block 1 geom=2dc type=e 

xOO.OO 
xln40    w 1.6891     rat 1.0 
x2 n 45   dxf 0.0422275 rat 1.05 

endx 
yO -9.9390075 
yl n 1545 dyf 0.0422275 rat 1.0 

endy 
xactive 0.0      0.4 
yactive -9.9390075 0.0 

endblock 
endmesh 
* 

insertion 
block 1 

package '5083 Al target' 
material 1 
numsub 50 
insert box 
pl=0.0     0.0 
p2=7.6    53.34 

endinsert 
endpackage 
package 'w alloy rod nose' 

material 2 
numsub 100 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.086e5 
insert circle 

ce=0.0    -0.33782 
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r= 0.33782 
endinsert 

endpackage 
package 'w alloy rod body' 

material 2 
numsub 50 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.086e5 
insert box 
pl-0.0    -0.33782 
p2=0.33782 -9.779 

endinsert 
endpackage 

endblock 
endinsertion 
* 

epdata 
vpsave 

* 

* NOTE: poisson ratio from for Tungsten from Metals Handbook, that for 5083 Aluminum 
* from Forrestal, M.J., V. K. Luk, and N. S. Brar, 'Perforation of aluminum with 
* conical-nose projectiles", Mechanic and Materials 10 (1990), pp. 97-105. 
* 

* NOTE: properties for 5083 aluminum from Silling, S. A., "CTH Reference Manual: Boundary 
* Layer Algorithm for Sliding Interfaces in Two Dimensions", Sandia National 
Laboratories 
* Report S AND93-2487, January 1994. 
* 

matep 1 
johnson-cook='USER' * NOTE: 5083-H131 ALUMINUM using undocumented power law 

ajo=-2.76e9 bjo=254.7   cjo=0.0 
mjo=1.0     njo=0.084   tjo=6.68e-2 
poisson 0.333 

* 

* NOTE: actual tungsten alloy was 95W-2.5Ni-l.0Fe-l.5Co (21% swaged) with rO=18.1. 
* 95W-3.5Ni-l.5Fe is being used to approximate the w alloy. 

matep 2 
steinberg=TUNGSTEN_NI_FE' 

r0st=18.16  tm0st=0.195002 atmst=1.3 
gm0st=1.67  ast=1.03e-12   bst=1.76396 
nst=0.13    clst=0.0       c2st=0.0 
g0st=1.45el2btst=7.7       eist=0.0 
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ypst=0.0    ukst=0.0       ysmst=0.0 
yast=0.0    yOst=18.7e9    ymst=40.e9 
poisson=0.280 

* 

* NOTE: parameters for boundary layer algorithm taken similar to: Kmetyk, L. N. and P. 
Yarrington, 
* "CTH Analysis of Steel Rod Penetration Into Aluminum and Concrete Targets with 
* Comparisons to Experimental Data", Sandia National Laboratories Report 
SAND94-1498, 
* October 1994. 
* 

* NOTE: if BLINT model was not used in simulation the next line is commented out with "*" 
* 

blint 1 soft 1 hard 2 wsl 0.084455 wbl 0.084455 fric=0.0 corr 
mix 3 

endep 
* 

tracer 
block 1 
add 0.0. to 0. -9.777 n 10 

endtracer 
* 

edit 
block 1 
noexpanded 

endblock 
endedit 
* 

eos 
* 

* NOTE: EOS properties from cth mgrun library 
* 

* NOTE: 5083-H131 Aluminum eos approximated with 6061-t6 Aluminum density reduced to 
reflect 
* that for 5083 Aluminum from Metals Handbook Desk Edition. 
* 

matl mgrun eos=6061-t6_al r0=2.66   cs=0.534e6  s=1.4 
g0=1.97   cv=1.07ell 

mat2mgruneos=tungsten_nir0=18.16  cs=0.403e6   s=1.237 
g0=1.67   cv=1.66el0 

endeos 
* 

*eor* cthin 
* 

nose shape tests: hemi v=1086 target=5083 al semi-infinite 
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control 
tstop 600.e-6 
rdumpf3600 
cpshift 999. 

endcontrol 

restart 
* file='rsctr 
cycle=11049 

endr 
* 

cellthermo 
mmp 
ntbad=99999 

ende 
* 

convct 
* 

* NOTE: if KE Sim convection=0, if MV Sim convection=l 
* 

convection=0 
interface=high_resolution 

endconvct 
* 

edit 
shortt 
time 0. dtfrequency 150.e-6 

ends 
longt 
time 0. dtfrequency 600.e-6 

endl 
plott 
time 0. dtfrequency 50.e-6 

endp 
histt 
time 0. dtfrequency 0.3e-6 
htracerl 
htracer2 
htracer3 
htracer4 
htracer5 
htracerö 
htracer7 
htracer8 
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htracer9 
htracerlO 

endh 
ende 
* 

boundary 
bhydro 
block 1 
bxbot 0 
bxtop 2 
bybot 2 
bytop 2 

endb 
endh 

endb 
* 

tracts 
pressure 
pfracl -4.5e9 
pfrac2 -35.0e9 
pfmix  -1.0e20 
pfvoid -1.0e20 

endf 
* 

*eor* pltinp 
* 
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Appendix B: 

CTH Input For Ogival-Nose Penetrator vs. 5083 Aluminum 
Target Using Pressure-Based Failure Model 
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* Run History 

*eor* cgenin 
* 

nose shape tests: ogive v=923 target=5083 al semi-infinite 
* 

control 
ep 
mmp 
viscosity bl=.l bq=2 bs=0.1 

endcontrol 
* 

mesh 
block 1 geom=2dc type=e 

xO 0.00 
xln40    w 1.6891     rat 1.0 
x2n45  dxf 0.0422275 rat 1.05 

endx 
yO -10.219055 
yl n 1545 dyf 0.0422275 rat 1.0 

endy 
xactive 0.0      0.4 
yactive -10.219055 0.0 

endblock 
endmesh 
* 

insertion 
block 1 

package '5083 Al target' 
material 1 
numsub 50 
insert box 
pl=0.0     0.0 
p2=7.6    53.34 

endinsert 
endpackage 
package 'w alloy ogive nose rod' 
material 2 
numsub 100 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 0.923e5 
insert uds 
point 0.0 0.0 
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point 0.050437038 -0.08003015622 
point 0.095867718 -0.1600603124 
point 0.136665799 -0.2400904687 
point 0.173135779 -0.3201206249 
point 0.205527612 -0.4001507811 
point 0.234047376 -0.4801809373 
point 0.258865148 -0.5602110935 
point 0.280120900 -0.6402412498 
point 0.297928948 -0.7202714060 
point 0.312381319 -0.8003015622 
point 0.323550306 -0.8803317184 
point 0.331490355 -0.9603618746 
point 0.336239443 -1.040392031 
point 0.337820   -1.120422187 
point 0.337820  -10.1346 
point 0.0       -10.1346 
point 0.0 0.0 

endinsert 
endpackage 

endblock 
endinsertion 

epdata 
vpsave 

* 

* NOTE: poisson ratio from for Tungsten from Metals Handbook, that for 5083 Aluminum 
* from Forrestal, M.J., V. K. Luk, and N. S. Brar, 'Perforation of aluminum with 
* conical-nose projectiles", Mechanic and Materials 10 (1990), pp. 97-105. 

NOTE: properties for 5083 aluminum from Silling, S. A., "CTH Reference Manual: Boundary 
Layer Algorithm for Sliding Interfaces in Two Dimensions", Sandia National Laboratories 
Report SAND93-2487, January 1994. 

matep 1 
johnson-cook='USER' * NOTE: 5083-H131 ALUMINUM using undocumented power law 

ajo=-2.76e9 bjo=254.7   cjo=0.0 
mjo=1.0     njo=0.084   tjo=6.68e-2 
poisson 0.333 

* NOTE: actual tungsten alloy was 95W-2.5Ni-l.0Fe-l.5Co (21% swaged) with rO=18.1. 
95W-3.5Ni-1.5Fe is being used to approximate the w alloy. 

matep 2 
steinberg=TUNGSTEN_NI_FE' 

rOst=18.16  tm0st=0.195002 atmst=1.3 
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gmOst=1.67  ast=1.03e-12   bst-1.76396 
nst=0.13    clst=0.0       c2st=0.0 
g0st=1.45el2btst=7.7       eist=0.0 
ypst=0.0    ukst=0.0       ysmst=0.0 
yast=0.0    y0st=18.7e9    ymst=40.e9 
poisson=0.280 

* 

* NOTE: parameters for boundary layer algorithm taken similar to: Kmetyk, L. N. and P. 
Yarrington, 
* "CTH Analysis of Steel Rod Penetration Into Aluminum and Concrete Targets with 
* Comparisons to Experimental Data", Sandia National Laboratories Report SAND94-1498, 
* October 1994. 
* 

* NOTE: if BLINT model was not used in simulation the next line is commented out with "*" 
* 

Mint 1 soft 1 hard 2 wsl 0.084455 wbl 0.084455 fric=0.0 corr 
mix 3 

endep 
* 

tracer 
block 1 
add 0.0. to 0.-10.1345 n 10 

endtracer 
* 

edit 
block 1 
noexpanded 

endblock 
endedit 
* 

eos 
* 

* eos properties from cth mgrun library 
* 

* NOTE: EOS properties from cth mgrun library 
* 

* NOTE: 5083-H131 Aluminum eos approximated with 6061-t6 Aluminum density reduced to 
reflect 
* that for 5083 Aluminum from Metals Handbook Desk Edition. 
* 

matl mgrun eos=6061-t6_al r0=2.66   cs=0.534e6  s=1.4 
g0=1.97 cv=1.07ell 

mat2 mgrun eos=tungsten_nir0=18.16  cs=0.403e6  s=1.237 
g0=1.67 cv=1.66el0 

endeos 
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*eor* cthin 
* 

nose shape tests: ogive v=923 target=5083 al semi-infinite 
* 

control 
tstop 600.e-6 
rdumpf3600 
cpshift 999. 

endcontrol 
* 

restart 
* file='rsctr 
cycle=7465 

endr 
* 

cellthermo 
mmp 
ntbad=99999 

ende 
* 

convct 
* 

* NOTE: if KE Sim convection=0, if MV Sim convection=l 
* 

convection=0 
interface=high_resolution 

endconvct 
* 

edit 
shortt 
time 0. dtfrequency 150.e-6 

ends 
longt 
time 0. dtfrequency 600.e-6 

endl 
plott 
time 0. dtfrequency 50.e-6 

endp 
histt 
time 0. dtfrequency 0.3e-6 
htracerl 
htracer2 
htracer3 
htracer4 
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htracer5 
htracerö 
htracer7 
htracer8 
htracer9 
htracerlO 

endh 
ende 

boundary 
bhydro 

block 1 
bxbot 0 
bxtop 2 
bybot 2 
bytop2 

endb 
endh 

endb 

tracts 
pressure 
pfracl -4.5e9 
pfrac2 -35.0e9 
pfmix  -1.0e20 
pfvoid -1.0e20 

endf 
* 

*eor* pltinp 
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Appendix C: 

CTH Input For Hemi-Nose Penetrator vs. 7039 
Aluminum Target Using Pressure-Based Failure Model 

35 



INTENTIONALLY LEFT BLANK 

36 



* Run History 
* 

*eor* cgenin 
* 

nose shape tests: hemi v=1038 target=7039 al semi-infinite 
* 

control 
ep 
mmp 
viscosity bl=.l bq=2 bs=0.1 

endcontrol 
* 

mesh 
block 1 geom=2dc type=e 

xOO.OO 
xln40    w 1.6891     rat 1.0 
x2 n 45   dxf 0.0422275 rat 1.05 

endx 
yO -9.9390075 
yl n 1545 dyf 0.0422275 rat 1.0 

endy 
xactive 0.0      0.4 
yactive -9.9390075 0.0 

endblock 
endmesh 
* 

insertion 
block 1 
package '7039 Al target' 

material 1 
numsub 50 
insert box 
pl=0.0     0.0 
p2=7.6    53.34 

endinsert 
endpackage 

* 

package 'w alloy rod nose' 
material 2 
numsub 100 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.038e5 
insert circle 
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ce=0.0    -0.33782 
r= 0.33782 

endinsert 
endpackage 

* 

package 'w alloy rod body' 
material 2 
numsub 50 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.038e5 
insert box 
pi =0.0    -0.33782 
p2=0.33782 -9.779 

endinsert 
endpackage 

endblock 
endinsertion 
* 

epdata 
vpsave 

* 

* NOTE: poisson's ratio from Metals Handbook 
* 

matep 1 
johnson-cook='7039_ALUMINUM' 

ajo=3.3672e9 bjo=3.4293e9 cjo=0.01 
mjo=1.0     njo=.41     tjo=7.76342e-2 
poisson 0.345 

* 

* NOTE: actual tungsten alloy was 95W-2.5Ni-l.0Fe-l.5Co (21% swaged) with r0=18.1. 
* 95W-3.5Ni-l.5Fe is being used to approximate the w alloy. 
* 

matep 2 
steinberg=TUNGSTEN_NI_FE' 

rOst=18.16  tm0st=0.195002 atmst=1.3 
gm0st=1.67  ast=1.03e-12   bst=l.76396 
nst=0.13    clst=0.0       c2st=0.0 
g0st=1.45el2btst=7.7       eist=0.0 
ypst=0.0    ukst=0.0       ysmst=0.0 
yast=0.0    y0st=18.7e9    ymst=40.e9 
poisson=0.280 
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* NOTE: parameters for boundary layer algorithm taken similar to: Kmetyk, L. N. and P. 
Yarrington, 
* "CTH Analysis of Steel Rod Penetration Into Aluminum and Concrete Targets with 
* Comparisons to Experimental Data", Sandia National Laboratories Report SAND94-1498, 
* October 1994. 
* 

* NOTE: if BLEST model was not used in simulation the next line is commented out with "*" 
* 

blint 1 soft 1 hard 2 wsl 0.084455 wbl 0.084455 fric=0.0 corr 
mix 3 

endep 
* 

tracer 
block 1 
add 0. 0. to 0. -9.777 n 10 

endtracer 
* 

edit 
block 1 

noexpanded 
endblock 

endedit 
* 

eos 
* 

* NOTE: EOS properties from cth mgrun library 
* 

* NOTE: 7039 Aluminum eos approximated with 7075-t6 Aluminum. Density reduced to reflect 
that 
* for 7039 Aluminum from Johnson and Cook (1983). 
* 

matl mgrun eos=7075-t6_al r0=2.77   cs=0.520e6  s=1.36 
g0=2.20   cv=1.07ell 

mat2mgruneos=tungsten_nir0=18.16  cs=0.403e6  s=1.237 
g0=1.67   cv=1.66el0 

endeos 
* 

*eor* cthin 
* 

nose shape tests: hemi v=1038 target=7039 al semi-infinite 
* 

control 
tstop 600.e-6 
rdumpf3600 
cpshift 999. 
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endcontrol 

restart 
* file=*rsctl' 
cycle=4727 

endr 
* 

cellthermo 
mmp 
ntbad=99999 

ende 
* 

convct 
* 

* NOTE: if KE Sim convection=0, if MV Sim convection=l 
* 

convection=0 
interface=high_resolution 

endconvct 
* 

edit 
shortt 
time 0. dtfrequency 150.e-6 

ends 
longt 
time 0. dtfrequency 600.e-6 

endl 
plott 

time 0. dtfrequency 50.e-6 
endp 
histt 

time 0. dtfrequency 0.3e-6 
htracerl 
htracer2 
htracer3 
htracer4 
htracer5 
htracerö 
htracer7 
htracer8 
htracer9 
htracerl 0 

endh 
ende 

40 



boundary 
bhydro 

block 1 
bxbot 0 
bxtop 2 
bybot 2 
bytop2 

endb 
endh 

endb 

tracts 
pressure 
pfracl -5.0e9 
pfrac2 -35.0e9 
pfmix  -1.0e20 
pfvoid -1.0e20 

endf 
* 

*eor* pltinp 
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Appendix D: 

CTH Input For Ogival-Nose Penetrator vs. 7039 
Aluminum Target Using Pressure-Based Failure Model 
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* Run History 

*eor* cgenin 
* 

nose shape tests: ogive v=1075 target=7039 al semi-infinite 
* 

control 
ep 
mmp 
viscosity bl=. 1 bq=2 bs=0.1 

endcontrol 
* 

mesh 
block 1 geom=2dc type=e 

xO 0.00 
xln40    w 1.6891     rat 1.0 
x2 n 45   dxf 0.0422275 rat 1.05 

endx 
yO -10.219055 
yl n 1545 dyf 0.0422275 rat 1.0 

endy 
xactive 0.0      0.4 
yactive -10.219055 0.0 

endblock 
endmesh 
* 

insertion 
block 1 

package 7039 Al target' 
material 1 
numsub 50 
insert box 
pl=0.0     0.0 
p2=7.6    53.34 

endinsert 
endpackage 

* 

package 'w alloy ogive nose rod1 

material 2 
numsub 100 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.075e5 
insert uds 

45 



point 0.0   0.0 
point 0.050437038 -0.08003015622 

point 0.095867718 -0.1600603124 

point 0.136665799 -0.2400904687 
point 0.173135779 -0.3201206249 
point 0.205527612 -0.4001507811 
point 0.234047376 -0.4801809373 
point 0.258865148 -0.5602110935 
point 0.280120900 -0.6402412498 
point 0.297928948 -0.7202714060 
point 0.312381319 -0.8003015622 
point 0.323550306 -0.8803317184 

point 0.331490355 -0.9603618746 

point 0.336239443 -1.040392031 

point 0.337820 -1.120422187 

point 0.337820 -10.1346 

point 0.0 -10.1346 
point 0.0 0.0 

endinsert 
endpackage 

endblock 
endinsertion 

epdata 
vpsave 
matep 1 

johnson-cook=7039_ALUMINUM' 
ajo=3.3672e9 bjo=3.4293e9 cjo=0.01 
mjo=1.0     njo=.41     tjo=7.76342e-2 
poisson 0.345 

* 

* NOTE: actual tungsten alloy was 95W-2.5Ni-l.0Fe-l.5Co (21% swaged) with r0=18.1. 
* 95W-3.5Ni-l.5Fe is being used to approximate the w alloy. 
* 

matep 2 
stemberg=TUNGSTEN_NI_FE' 

r0st=18.16 tm0st=0.195002 atmst=1.3 
gm0st=1.67  ast=1.03e-12   bst=1.76396 
nst=0.13    clst=0.0       c2st=0.0 
g0st= 1.45e 12 btst=7.7       eist=0.0 
ypst=0.0    ukst=0.0       ysmst=0.0 
yast=0.0    y0st=18.7e9    ymst=40.e9 
poisson=0.280 
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* NOTE: parameters for boundary layer algorithm taken similar to: Kmetyk, L. N. and P. 
Yarrington, 
* "CTH Analysis of Steel Rod Penetration Into Aluminum and Concrete Targets with 
* Comparisons to Experimental Data", Sandia National Laboratories Report SAND94-1498, 
* October 1994. 
* 

* NOTE: if BLINT model was not used in simulation the next line is commented out with "*" 
* 

blint 1 soft 1 hard 2 wsl 0.084455 wbl 0.084455 fric=0.0 corr 
mix 3 

endep 

tracer 
block 1 
add 0.0. to 0.-10.1345 n 10 

endtracer 
* 

edit 
block 1 
noexpanded 

endblock 
endedit 
* 

eos 
* 

* NOTE: EOS properties from cth mgrun library 
* 

* NOTE: 7039 Aluminum eos approximated with 7075-t6 Aluminum. Density reduced to reflect 
that 
* for 7039 Aluminum from Johnson and Cook (1983). 
* 

matl mgrun eos=7075-t6_al r0=2.77   cs=0.520e6  s=1.36 
g0=2.20   cv=1.07ell 

mat2 mgrun eos=tungsten_ni rO= 18.16 cs=0.403e6  s= 1.237 
g0=1.67   cv=1.66el0 

endeos 
* 

*eor* cthin 
* 

nose shape tests: ogive v=1075 target=7039 al semi-infinite 
* 

control 
tstop 600.e-6 
rdumpf3600 
cpshift 999. 
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endcontrol 
* 

restart 
* file='rsctl' 
cycle=4691 

endr 

cellthermo 
mmp 
ntbad=99999 

ende 
* 

convct 
* 

* NOTE: if KE Sim convection=0, if MV Sim convection=l 
* 

convection=0 
interface=high_resolution 

endconvct 
* 

edit 
shortt 
time 0. dtfrequency 150.e-6 

ends 
longt 
time 0. dtfrequency 600.e-6 

endl 
plott 

time 0. dtfrequency 50.e-6 
endp 
histt 

time 0. dtfrequency 0.3e-6 
htracerl 
htracer2 
htracer3 
htracer4 
htracer5 
htracerö 
htracer7 
htracer8 
htracer9 
htracerl 0 

endh 
ende 
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boundary 
bhydro 

block 1 
bxbot 0 
bxtop 2 
bybot 2 
bytop2 

endb 
endh 

endb 

tracts 
pressure 
pfracl -5.0e9 
pfrac2 -35.0e9 
pfinix  -1.0e20 
pfvoid -1.0e20 

endf 
* 

*eor* pltinp 
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Appendix E: 

CTH Input For Hemi-Nose Penetrator vs. 5083 
Aluminum Target Using Strain-Based Failure Model 
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* Run History 
* 

*eor* cgenin 
* 

nose shape tests: hemi v=1296 target=5083 al semi-infinite 
* 

control 
ep 
mmp 
viscosity bl=.l bq=2 bs=0.1 

endcontrol 
* 

mesh 
block 1 geom=2dc type=e 

xO 0.00 
xln40    w 1.6891     rat 1.0 
x2n45  dxf 0.0422275 rat 1.05 

endx 
yO -9.9390075 
yl n 1545 dyf 0.0422275 rat 1.0 

endy 
xactive 0.0      0.4 
yactive -9.9390075 0.0 

endblock 
endmesh 
* 

insertion 
block 1 

package '5083 Al target1 

material 1 
numsub 50 
insert box 
pl=0.0     0.0 
p2=7.6    53.34 

endinsert 
endpackage 

* 

package 'w alloy rod nose' 
material 2 
numsub 100 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel 1.296e5 
insert circle 
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ce=0.0    -0.33782 
r= 0.33782 

endinsert 
endpackage 

package 'w alloy rod body' 
material 2 
numsub 50 

* 

* NOTE: striking velocity (yvel) is changed below 
* 

yvel1.296e5 
insert box 
pl=0.0    -0.33782 
p2=0.33782 -9.779 

endinsert 
endpackage 

endblock 
endinsertion 
* 

epdata 
vpsave 

* 

* NOTE: poisson ratio from for Tungsten from Metals Handbook, that for 5083 Aluminum 
* from Forrestal, M.J., V. K. Luk, and N. S. Brar, 'Perforation of aluminum with 
* conical-nose projectiles", Mechanic and Materials 10 (1990), pp. 97-105. 
* 

* NOTE: properties for 5083 aluminum from Silling, S. A., "CTH Reference Manual: Boundary 
* Layer Algorithm for Sliding Interfaces in Two Dimensions", Sandia National Laboratories 
* Report S AND93-2487, January 1994. 
* 

matep 1 
johnson-cook='USER' * NOTE: 5083-H131 ALUMINUM using undocumented power law 

ajo=-2.76e9 bjo=254.7   cjo=0.0 
mjo=1.0     njo=0.084   tjo=6.68e-2 
poisson 0.333 

* 

* NOTE: for strain failure at 150% on parameter for Johnson-Cook fracture model except the first 
* are set to zero. 
* 

jfrac^SER' jfdl=l .5 jfd2=0.0 jfd3=0.0 jfd4=0.0 jfd5=0.0 
jftm=0.0jfpf0=-4.5e9 

* 

* NOTE: actual tungsten alloy was 95W-2.5Ni-l.0Fe-l.5Co (21% swaged) with r0=18.1. 
* 95W-3.5Ni-1.5Fe is being used to approximate the w alloy. 
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matep 2 
steinberg=TUNGSTEN_NI_FE' 

rOst=18.16  tmOst=0.195002 atmst=1.3 
gm0st=1.67   ast=1.03e-12   bst=1.76396 
nst=0.13    clst=0.0       c2st=0.0 
g0st= 1.45e 12 btst=7.7       eist=0.0 
ypst=0.0    ukst=0.0       ysmst=0.0 
yast=0.0    y0st=18.7e9    ymst=40.e9 
poisson=0.280 

* 

* NOTE: for strain failure at 150% on parameter for Johnson-Cook fracture model except the first 
* are set to zero. 
* 

jfrac='USER* jfdl=l .5 jfd2=0.0 jfd3=0.0 jfd4=0.0 jfd5=0.0 
jftm=0.0jfpf0=-35.e9 

* 

* NOTE: parameters for boundary layer algorithm taken similar to: Kmetyk, L. N. and P. 
Yarrington, 
* "CTH Analysis of Steel Rod Penetration Into Aluminum and Concrete Targets with 
* Comparisons to Experimental Data", Sandia National Laboratories Report SAND94-1498, 
* October 1994. 
* 

* NOTE: if BLINT model was not used in simulation the next line is commented out with "*" 
* 

Mint 1 soft 1 hard 2 wsl 0.084455 wbl 0.084455 fric=0.0 corr 
mix 3 

endep 
* 

tracer 
block 1 
add 0. 0. to 0. -9.777 n 10 

endtracer 
* 

edit 
block 1 
noexpanded 

endblock 
endedit 
* 

eos 
* 

* eos properties from cth mgrun library 
* 

* 5083-H131 Aluminum eos approximated with 6061-t6 Aluminum 
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* density reduced to reflect that for 5083 Aluminum from 
* Metal's Handbook. 
matl mgrun eos=6061-t6_al r0=2.66   cs=0.534e6  s=1.4 

gO-1.97   cv=1.07ell 
mat2 mgrun eos=tungsten_ni rO=l 8.16  cs=0.403e6   s= 1.237 

gO-1.67   cv=1.66el0 
endeos 
* 

*eor* cthin 
* 

nose shape tests: hemi v=1296 target=5083 al semi-infinite 
* 

control 
tstop 600.e-6 
rdumpf3600 
cpshift 999. 

endcontrol 
* 

restart 
* file='rsctl' 
cycle=15972 

endr 
* 

cellthermo 
mmp 
ntbad=99999 

ende 
* 

convct 
* 

* NOTE: if KE Sim convection=0, if MV Sim convection=l 
* 

convection=0 
interface=high_resolution 

endconvct 
* 

edit 
shortt 
time 0. dtfrequency 150.e-6 

ends 
longt 
time 0. dtfrequency 600.e-6 

endl 
plott 

time 0. dtfrequency 50.e-6 
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endp 
histt 

time 0. dtfrequency 0.3e-6 
htracerl 
htracer2 
htracer3 
htracer4 
htracer5 
htracerö 
htracer7 
htracer8 
htracer9 
htracerl 0 

endh 
ende 
* 

boundary 
bhydro 

block 1 
bxbot 0 
bxtop 2 
bybot 2 
bytop2 

endb 
endh 

endb 
* 

fracts 
pressure 
pfracl -4.5e9 
pfrac2 -35.0e9 
pfmix   -1.0e20 
pfvoid -1.0e20 

endf 
* 

*eor* pltinp 
* 

units=cgsk 
allcells=off 
color void 0 
color table 4 
color void 0 
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